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Project Summary

European musical heritage is a dynamic historical flow of experiences, leaving heterogeneous
traces that are difficult to capture, connect, access, interpret, and valorise. Computing technolo-
gies have the potential to shed a light on this wealth of resources by extracting, materialising and
linking new knowledge from heterogeneous sources, hence revealing facts and experiences from
hidden voices of the past. Polifonia makes this happen by building novel ways of inspecting, rep-
resenting, and interacting with digital content. Memory institutions, scholars, and citizens will be
able to navigate, explore, and discover multiple perspectives and stories about European Musical
Heritage.
Polifonia focuses on European Musical Heritage, intended as musical contents and artefacts - or
music objects - (tunes, scores, melodies, notations, etc.) along with relevant knowledge about
them such as: their links to tangible objects (theatres, conservatoires, churches, etc.), their cul-
tural and historical contexts, opinions and stories told by people having diverse social and artistic
roles (scholars, writers, students, intellectuals, musicians, politicians, journalists, etc), and facts
expressed in different styles and disciplines (memoire, reportage, news, biographies, reviews),
different languages (English, Italian, French, Spanish, and German), and across centuries.
The overall goal of the project is to realise an ecosystem of computational methods and tools
supporting discovery, extraction, encoding, interlinking, classification, exploration of, and access
to, musical heritage knowledge on the Web. An equally important objective is to demonstrate
that these tools improve the state of the art of Social Science and Humanities (SSH) method-
ologies. Hence their development is guided by, and continuously intertwined with, experiments
and validations performed in real-world settings, identified by musical heritage stakeholders (both
belonging to the Consortium and external supporters) such as cultural institutes and collection
owners, historians of music, anthropologists and ethnomusicologists, linguists, etc.



Executive Summary

Deliverable D3.2 is titled: Analysis of music repositories to identify musical patterns. It is due
month 12, and linked to Task 2 of WP3: pattern recognition and definition in monodic and poly-
phonic music. The task leader is NUIG and the participants are: UNIBO, OU, KCL, CNRS,
CNAM, KNAW. This deliverable and task are strongly linked with D3.1 software tools for pattern
extraction also due in month 12. Central sub-tasks include identifying frequent and significant
patterns in music segments, and formally expressing these patterns and relations with other con-
cepts including other patterns. Later deliverables in WP3 are planned at Months 18 and 24, D3.3
and D3.4.
Thus this document D3.2 and D3.1 both report on work in progress. It is organised into an
introduction and literature review, followed by four chapters corresponding to four main strands of
parallel research as listed below, and a brief conclusion.

Irish folk music An n-gram approach is used to characterise patterns in monophonic melodies,
and frequent common patterns are identified. The approach has been informally validated:
it identifies both well-known and new links between tunes in a corpus, and in discussion with
(independent) domain experts, these links are confirmed to be meaningful. Simple machine
learning algorithms for root-note detection in the same corpus have been developed. The
code developed in this strand has already been generalised to work on Dutch corpora,
enabling next steps in cross-tradition analysis.

Dutch folk music This research will build on extensive previous research with the Dutch Song
Database and Meertens Tune Collections. Again it will be mostly monophonic and will find
links within and between pieces and across corpora. This strand of research has begun
recently (September), and so no new results are to be reported yet.

Search engine framework for patterning mining A faceted search engine for music data is de-
veloped, based on representing music using n-grams and feature descriptors, and applying
standard search engine modules (indexing, searching, and ranking) and on-line identifica-
tion of fragments which match the user query. Search across melody, harmony, and lyrics
is possible. It is available on the Neuma platform and suitable for general use.

Harmonic similarity By reducing a segment of music to a representation of its harmony alone,
common harmonic patterns can be identified. This method currently runs on several
datasets including Isophonics for pop music, the JAAH jazz harmony dataset, and Schubert
Winterreise for classical music, and succeeds in identifying interesting relationships within
and between corpora. It was demonstrated at the SONAR festival 2021.
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1 Introduction

Pattern is a central concept in many fields. Mathematics has been called “the science of pat-
terns” [1]; “pattern recognition” is almost a synonym for the field of machine learning; in architec-
ture, Alexander [2] codified common design patterns, a term then adopted by software developers
also. It is central in many forms of art, design, and music [3]. Probably this is because the human
brain is characterised by “superior pattern-processing” ability [4], and these activities play with
our pattern-recognition abilities.
However, the term has a certain ineffability. For one thing, pattern can be highly concrete (“in
bar 3, the pattern in bar 1 is used again”) or highly abstract (patterns among patterns). Pattern
can be present within an object, or as a relationship between two or more objects. The term can
be used both as a count noun (“there are three main patterns in this song”) and a mass noun
(“pattern is present”). A danger is that a discussion of pattern may involve people talking about
different things without realising it.
Focussing on music, one reasonable definition is that pattern is present when there is repetition:

A number of influential music analysts and music psychologists have stressed that
discovering the important repetitions in a passage of music is an essential step to-
wards achieving a rich understanding of it. For example, Heinrich Schenker claimed
that repetition “is the basis of music as an art” [3, p. 5], Ian Bent proposed that “the
central act” in all forms of music analysis is “the test for identity” [4, p. 5] and Lerdahl
and Jackendoff [2, p. 52] state that the importance of parallelism [i.e., repetition] in
musical structure cannot be overestimated. The more parallelism one can detect, the
more internally coherent an analysis becomes, and the less independent information
must be processed and retained in hearing or remembering a piece. – [5, original
citations included].

This repetition need not be literal or precise, for example in music if a sequence of notes is
repeated with transposition, it will certainly be regarded as a pattern. Other related terms include:
invariance (i.e., something stays the same, though implicitly other things change), regularity (i.e.,
based on rules, which allows for pattern to be present even when highly indirect), or organisation
(Varèse called music “organised sound” [6]).
When repetition is present but in an abstract way, a complex mapping between the occurrences
may be needed, and this is a type of analogy [7]. Alexander [2] was motivated by seeing a
repetition of approaches across many projects.
Another view of pattern does not necessarily involve repetition. In a search scenario, a user
might specify a segment of music, such as a phrase of two bars, to be searched for (the “search
pattern”) in a large corpus. The search engine will return a result even if the segment occurs only
once. However, Bent’s “central act” of testing for identity or invariance remains in this scenario.

1
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Within Polifonia, “the overall goal of WP3 is to devise approaches to analysing large repositories
of music (tunes, songs, etc.) to identify common, meaningful patterns that are indicative of their
identity, filiation or cultural association (genres, origin, etc).” In particular, WP3 requires us to:

• Choose representations for musical data;
• Define algorithms for pattern extraction;
• Define metrics of pattern quality, i.e. measure success;
• Extract patterns in various pieces and corpora;
• Use the patterns and pattern definitions to formally express possible relationships between

pieces and corpora.

All this work may be informed by background knowledge (present also in other WPs) with a
longer-term goal of creating machine-readable data in the form of ontologies and knowledge
graphs (see Deliverable D2.1).
In this report we report on progress and results in WP3 during the first 11 months of the Polifonia
project.
In Chapter 2, we start by briefly exploring various dimensions of pattern, in order to situate both
previous work and the individual strands of Polifonia WP3 work to be reported in later chapters.

2



Deliverable D3.2 Analysis of music repositories to identify musical patterns
V1.0 20/12/2021

2 Common Background and Literature Review

2.1 Dimensions of Pattern

Pattern can be present in any of the “elements” or “layers” of music, including melody, harmony,
rhythm, and timbre. Pattern can be on a short time-scale or a longer one. These are two exam-
ples of what we might call the dimensions of pattern. What are the other dimensions?

Layers Pattern can be present in melody, in harmony, in rhythm, and in timbre. Pattern can also
be present in spatial location of audio, and in words where present (see Deliverable 4.1 for
Polifonia research on music textual corpora). Importantly, pattern can occur in interactions
between layers also.

Time-scale Some patterns might consist of just a few notes, while others are concerned with the
large-scale structure or form of a piece (sonata, ABA form, etc.).

Multiplicity If a pattern is defined by a user as a search pattern, then it may occur zero or more
times in a given piece. If a pattern is defined by its occurrence then at least one repetition
is needed.

Intra-voice versus inter-voice In a monophonic piece of music, repetition may occur immedi-
ately, or delayed. In a polyphonic piece of music, repetition may also occur simultaneously,
between multiple voices.

Intra-opus versus inter-opus versus inter-corpus Repetition may occur within a single piece,
or between pieces. With inter-opus pattern, we may be interested in something that occurs
once in Opus 1 and occurs once in Opus 2 (for example a particular cadence), or we may
only be interested in something that occurs many times in Opus 1 (and thus is already a
pattern in its own right) and many times in Opus 2. Inter-opus pattern may be between a
pair of pieces, or across a corpus, or even between multiple corpora (now the focus may
for example be on differing frequency of usage of particular patterns between the corpora).

Abstraction Some patterns are highly concrete, e.g. a sequence of notes that is repeated mul-
tiple times verbatim. Others are more abstract, e.g. in rock music it is common for the
drummer to play a fill at the end of each 4- or 8-bar section; even if the content of the fill
differs each time, it is an abstract pattern. While concrete patterns are the more common
subject of musicology and music information retrieval (MIR), more abstract types of pat-
tern are also of interest and may require more sophisticated algorithms for detection and
abstraction.
Similarly, if pattern is (non-literal) repetition, we can see the degree of non-literalness as
corresponding to abstraction. The following situations all indicate pattern at different (ap-
proximately increasing) levels of abstraction:

3
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1. Bar 2 is identical to bar 1;
2. Bar 2 is identical to bar 1, if we ignore dynamics;
3. Bar 2 is identical to bar 1, if we subtract a chromatic or diatonic pitch offset (the latter

being a typical transposition);
4. Segment 2 is identical to segment 1, if we ignore the choice of instrument;
5. Segment 2 is identical to segment 1, if we ignore rhythm (e.g. in canon by augmenta-

tion as used by J. S. Bach);
6. Segment 2 is identical to segment 1, if we ignore everything except rhythm;
7. Segment 2 is identical to segment 1, if we ignore the ending of each;
8. Segment 2 is identical to segment 1, if we ignore everything except chord progression

(e.g. parts of My Way and Life on Mars1);
9. Piece 2 is identical to piece 1, if we ignore all content and consider only the “verse-

chorus-verse-chorus-bridge-chorus” structure;
10. Piece 2 is similar to piece 1, if we consider only histograms of pitches and note dura-

tions [8].

Thus, we see that identifying abstract pattern is synonymous with ignoring some information
which is (for the moment) irrelevant. Knowing which information is relevant, and which is
irrelevant, in a given situation and for the purpose of a given analogy, has been argued to
be central to fluid, human-like intelligence [7].

Mechanism of repetition Closely related to the question of abstraction is the mechanism of
repetition. We will explain by example. Suppose we have two musical segments X and Y,
and we perceive that Y is a repetition in some sense of X, i.e. there is pattern. This repetition
may arise, or may be perceived to arise, in several different ways. Y may be perceived as
a transformation of X. Both X and Y may be perceived as identical after reduction, or as
identical if allowing for a few small edits. Both X and Y may be perceived as generated by
instances of the same process (this process may be parameterised or non-deterministic,
allowing for distinct outputs). Or X and Y may be perceived as generated by different
processes from the same abstract underlying data.

Exact versus fuzzy Sometimes a pattern is repeated exactly, and in other cases the repetition
is varied. This is (slightly) distinct from the reduction/abstraction or “ignoring information”
point of view advanced above, as here the focus is on a literal repetition of the concrete
music with a small fuzz-factor or edit distance, whereas above it is about an exact match
(zero edit distance) on some abstracted representation of the music.

Signal versus symbolic data The raw data on which a pattern is defined (i.e., on which a pat-
tern detection algorithm runs) may be an audio signal, or it may a symbolic music repre-
sentation such as MIDI. Because audio signals are so low-level, it is generally necessary to
process them before any meaningful patterns can be detected, e.g. with averaging, spectral
transformation, or pitch detection (thus transforming to a symbolic representation).

1https://www.youtube.com/watch?v=dd-b8GbOPKg
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Musically meaningful Pattern may be present without being meaningful. In a corpus of rock
music, we will find many bars with 4 beats. Algorithms free of background knowledge might
discover this pattern, but users will know they are not worth reporting. Ideas such as TF-
IDF (term frequency – inverse document frequency [9]) quantify our intuition that important
patterns are (1) common in the piece, but also (2) distinctive to the piece, not ubiquitous
across all pieces. As Conklin [10] writes, “[a] pattern is distinctive if it is over-represented
with respect to an anticorpus”.
Since pushing boundaries is a fundamental ingredient of many art forms, there are no
types of patterns (e.g. highly abstract patterns) which are inherently “off-limits”: any type
of pattern an artist chooses to use is potentially meaningful. Since listeners may be highly
sophisticated and may themselves be artists, there is no asymmetry between artists and
listeners in this: any pattern that is perceived by listeners is, again, meaningful.
However, it is also possible that pattern may be present without being intended by the artist
or perceived by the listener. When patterns are very common in a tradition or a genre,
a composer may use them without conscious intention. Meredith [5] gives an example to
show that repetition may be present by coincidence, and thus not meaningful.

Implicit versus explicit A further scenario where this “unperceived pattern” could arise is when
we define pattern using the tools of algorithmic information theory (Kolmogorov complexity,
minimum description length), as some scientists do, declaring that pattern is present when
a compression of the musical signal is possible (taking advantage of previous content of
the signal). For example, Dubnov [11] uses neural network and other methods to measure
the information rate of the audio signal. Such methods result in the detection that pattern
exists, without exhibiting any specific pattern as a result.

Definition versus algorithm In principle, listeners may agree that a pattern fitting a certain def-
inition is present, even if no algorithm is known for extracting such a pattern.

2.2 Goals

The above dimensions relate to the definition of pattern. A different aspect is the goal of defining
patterns. Sometimes the goal is to identify common origins of pieces. In the work of Lartillot [12]
the goal is motivic and thematic analysis. But in the work of Dixon et al. [13], for example, the
patterns are to be used in a machine learning genre classification model.
In Polifonia, the goals and motivation for our pattern research arise mostly through the pilots:

TUNES: analysis and classification This pilot primarily concerns research with the Dutch folk
song collections (to be described in more detail in Chapter 4). The central research ques-
tion is “To what extent are melodies from Dutch 17th and 18th century sources connected
with melodic repertoires from elsewhere in Europe?” These connections may take the form
of familial relationships between pieces of music, and pattern analysis is a natural way of
uncovering this. Thus, this motivates the cross-corpus research to be described in Chap-
ters 3-4.

5



Deliverable D3.2 Analysis of music repositories to identify musical patterns
V1.0 20/12/2021

FACETS: Exploration of music scores collections through statistical features This pilot
will build a search engine suitable for exploration of music scores. One central way to
explore such scores is through user queries for the occurrence of music segments. Now,
pattern-matching in musical scores is required, motivating the research described in
Chapter 5.

INTERLINK Interlinking of collections in digital music libraries and audiovisual archives
In this pilot the goals are to achieve a commonality and interoperability between many
archives, corpora, and datasets. The research reported in Chapter 6, also related to
the SONAR demonstration, begins to establish links across diverse corpora so that they
are interoperable. There is a strong link here with Deliverable D2.1, “Ontology-based
knowledge graphs for music objects”. To go beyond this and find interesting links, it
demonstrates that harmonic patterns can be used.

In Polifonia, goals are also partly defined through user stories and personas. The following ex-
amples illustrate some of the goals of WP3 pattern research. Descriptions are from the Polifonia
stories repository2.

Keith, event and music producer “Keith wants to compile programmes of music, e.g. for mu-
sic festivals. This involves putting together related pieces of music; in some cases the
relationship may be non-obvious” (see Chapter 6).

Mark, computational musicologist “Mark is interested in understanding how Dutch folk tunes
relate to other music [. . . ] Can we compare music from different collections, e.g. from
different countries to show connections/influences between musical styles? [. . . ] Can we
identify a tune (e.g. from an oral tradition) in our collection with music in another docu-
mented collection, e.g. RISM, NEUMA, ABC. [. . . ] Can we visualize interconnections, e.g.
of tunes which share melodic patterns or geographical origin?” (See Chapters 3-4 for work
preliminary to this)

William, art historian working as a curator for the Europeana platform “William is looking
for connections between composers, compositions and performers across various collec-
tions of 20th century music in Europe, particularly folk music.” (See Chapters 3-4 for work
preliminary to this)

Sethus, music theorist, composer and teacher, specialized in late Renaissance music.
“Sethus uses a search tool that allows to explore the corpus at hand based on several
criteria. An initial search can be done based on melodic profile (say, a typical cadence in a
soprano line).” (See Chapter 5)

Sonia, lecturer, music producer and festival director interested in finding new music “As
each piece plays, the playlist app visualises interconnections to past and future steps in
the musical pathway. Shuffle mode can make connections according to a wide range of
features such as the composer, musicians, lyrics, melodic patterns, locations and historical
events.”

2https://github.com/polifonia-project/stories

6
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Sophia, musicologist and practising musician “Sophia is analysing a Frescobaldi composi-
tion and notices a particular motif that accompanies a reference to birdsong. She decides
to see where else this motif can be found in the compositions of Frescobaldi, the compo-
sitions of his contemporaries and also investigate the language accompanying the motif.”
(See Chapter 5)

2.3 Previous work

In this section we briefly mention some highlights of previous work on pattern in music in general.
Previous work which is specific to particular subsequent chapters is postponed to those chapters.
As already mentioned, the idea of ignoring irrelevant information is central to uncovering pattern.
With this perspective, the concept of reduction becomes important, as in Schenkerian analysis
and the Generative Theory of Tonal Music [14, 15]. Simonetta et al. [16] apply a gradual reduction
to melody data and create a graph representation suitable for measuring melodic similarity. Hand-
in-hand with the idea of reduction goes the idea of a trade-off: any definition which allows us to
identify some concrete patterns by reducing some information necessarily fails to identify some
other types of pattern.
In folk music, common patterns among tunes have been noted since the 19th century [17]. “Tune
families” were identified on the basis of common patterns with assumed ur-melody origins [17,
18, 19], and these ideas have often informed computational ethnomusicology [19].
Still focussing on the melodic layer, repositories exist of common patterns used by jazz soloists.
For example, Coker [20] writes that “we seldom hear an improviser’s solo that does not contain
melodic fragments or patterns”, which could be taken from various sources, and so they provide
a repository of patterns to fill a “need for a collection of patterns to be practiced diligently” by jazz
improvisers. This is a rather different goal from the goals of musicology, e.g. finding common
origins of tunes. Interestingly, they choose to present most patterns in eighth notes, “without
rhythmic variation”, i.e. ignoring some information in order to achieve commonality. Among many
other works, Frieler et al. [21] present applications for exploring patterns in jazz solos, drawing
from the Weimar Jazz Database [22]. Distinctions are drawn between related terms patterns
(“repeated sub-sequences”) and formulas, licks, stock-phrases, and riffs. For Coker [20] and for
Frieler et al. [21], patterns are quite concrete and involve short time-scales, defined at the level
of pitch sequences but allowing for transposition and rhythmic variation. But by the nature of the
genre, patterns in jazz can reach unbounded levels of abstraction and complexity also.
Meredith [5] proposes a geometric “point-set” algorithm for detecting repetition in symbolic music.
It considers note pitch and onset time only. It is geometric in the sense that it considers the score
as a grid of two axes (diatonic pitch and time), and while the goal is to detect repetition and
allow for variation, the variations that are allowed are only those easily expressed by geometric
transformations in this grid: delay (= shift in the time axis), transposition (= shift in the pitch
axis), elongation (= scale in the time axis). It uses heuristics named coverage, compactness
and compression ratio to try to discover only interesting patterns. Extensions to Meredith’s basic
algorithms have also been proposed [23, 24].
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Conklin [10] describes an approach to extracting “distinctive” patterns in symbolic music. Again
a musical grid is assumed. Features such as pitch, diatonic pitch, pitch contour (with values of =,
+, and -) and duration are calculated at each note-event. Patterns consist of commonly-occurring
sequences of such information, even across layers (e.g. [+ + + dur(4)], “a sequence of three
upward jumps in pitch, followed by a note of duration 4 beats” might be a valid pattern). TF-
IDF ideas are used to avoid identifying many uninteresting patterns, with thresholds for important
parameters in the definition of “interesting”. Intra-corpus analysis is facilitated: the paper identifies
the single most distinctive pattern in each of 6 corpora. Thus, Conklin’s patterns are highly
concrete, but are unusual in that they can span layers. Both Meredith and Conklin can work with
polyphonic music.
In “high art”, a composer will generally aim for originality, and if they choose to develop variations
on another composer’s theme they make this explicit in a title or subtitle, and thus it is available
in metadata. In the study of corpora from “oral” traditions it is common to encounter monophonic
data, i.e. just melodies, and a high degree of sharing of patterns between pieces which may be
useful to identify known or unknown relationships between pieces.
Dixon et al. [13] use rhythmic patterns extracted from audio signals to classify music by genre.
Thus, this is a departure from other work mentioned so far in that it is in the rhythm layer and
begins with the audio signal rather than the symbolic representation of the music. It is also a
departure in that the patterns identified are used in a classification task.
Finally, while our focus is on patterns in music, it is interesting to see both practical and theoret-
ical work on patterns in other fields. Gangemi and Presutti [25] define “knowledge patterns” as
something like template sub-graphs in knowledge graphs, whose components can vary while the
template structure remains. Finding templates which occur often allows interesting applications.
The problems that arise in finding them parallel those of musical patterns: the data (a knowledge
graph, or a piece of music) is not “rectangular” but has relational and hierarchical aspects; there
are an unlimited number of candidate patterns; and there are no clear boundaries.

2.4 Summary

The central goals of Polifonia WP3 include identification of patterns that are useful in detecting
relationships between pieces of music, with particular focus on Europe’s musical heritage. Taken
together with our “dimensions” of pattern this allows us to narrow our focus in the research of the
following Chapters 3-6.
We begin with commonalities: all strands of the research work at the symbolic level, and use
algorithms to exhibit or use explicit patterns rather than merely detecting that pattern exists.
Next, we show some distinctions between the strands of research, with a summary of pattern
dimensions in Table 2.1. We then briefly describe the four substantial chapters.
With a focus on monophonic Irish folk tunes, the work of NUIG (Chapter 3) will use sequence
mining approaches on melodic data. Patterns will short-term, and in the melodic layer only. They
will be quite concrete, but not at the level of raw pitches: instead melodies will be normalised
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by transposition, and both Parsons code (using up/down jumps but discarding the size of jumps)
and accented notes only (discarding non-accented notes) will be explored. A “frequent n-gram”
approach is used, thus multiplicity of patterns is high and is central to our judgement of which
patterns are important. With a similar focus on monophonic Dutch traditional music, the work of
KNAW (Chapter 4) will also use quite concrete and short time-scale patterns.
In both Chapters 3 and 4, patterns are initially identified intra-opus, but are then used inter-opus
to identify potential links between pieces.
In the work of CNAM (Chapter 5), we shift to focus on developing a general framework for pattern
extraction, relying on a search-engine back-end (and again an n-gram approach, though slightly
different). The user query is regarded as a pattern to be matched in the dataset. This is achieved
by a careful data representation in which multiple descriptors extract features for later use in
a search engine with indexing, searching, and ranking procedures. The representation allows
for inexact, i.e. fuzzy, matching. New descriptors could be added, to allow for new searchable
patterns. Patterns here are inter-opus from the system’s point of view, in the sense that a user’s
search is immediately run across the entire dataset.
Finally, in the work of KCL and UNIBO (Chapter 6), we shift to focus on a harmonic similarity
model. Thus we are now in the harmony layer. Exciting results emerge from inter-opus and
inter-corpus use of patterns. The harmonic similarity measure defined here is positive even for a
single instance of a shared pattern between two pieces, thus we are now considering multiplicity
of one.
Thus, we can also mention the types of patterns we have not considered in this WP. We are
not considering timbre or lyrical layers, or rhythm except indirectly. We have worked with sym-
bolic representations of music only, never audio-level. We have not considered highly abstract
patterns, though some exploration here is likely in future.
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Table 2.1: Summary of pattern dimensions used in four strands of research in this deliverable.
The ’x’ characters indicate position in the spectrum indicated.

Irish traditional music, Ch 3
Layer: melodic
Source of pattern importance: multiplicity

Monophonic x Polyphonic
Short time-scale x x Long time-scale

Exact x x Fuzzy
Concrete x Abstract

Intra-opus x x Inter-opus

Dutch folk music, Ch 4
Layer: melodic
Source of pattern importance: multiplicity

Monophonic x Polyphonic
Short time-scale x x x Long time-scale

Exact x x Fuzzy
Concrete x Abstract

Intra-opus x x Inter-opus

NEUMA search engine, Ch 5
Layer: melodic
Source of pattern importance: user query

Monophonic x Polyphonic
Short time-scale x Long time-scale

Exact x Fuzzy
Concrete x Abstract

Intra-opus x Inter-opus

Harmonic similarity, Ch 6
Layer: harmonic
Source of pattern importance: cross-corpus occurrence

Monophonic x Polyphonic
Short time-scale x x Long time-scale

Exact x Fuzzy
Concrete x Abstract

Intra-opus x x Inter-opus

10



Deliverable D3.2 Analysis of music repositories to identify musical patterns
V1.0 20/12/2021

3 Patterns in Irish Traditional music

In this chapter we describe research on patterns in Irish traditional dance music. This topic is
partly motivated by the TUNES pilot (understanding the relationships among a corpus of pieces,
with focus on the Dutch tradition but secondary focus on Irish). It clearly fits under the heading
of “a digital ecosystem for European Musical Heritage”. The methods developed here will be
applicable to other traditions, such as the Dutch tradition to be studied in the TUNES pilot, and
vice versa.

3.1 Literature Review

Readings are ongoing in musicology and ethnomusicology, specifically relating to Irish traditional
music. Additional ongoing readings seek to establish a general overview of relevant contem-
porary work in the fields of music information retrieval and computational ethnomusicology and
computational musicology more generally [26, 27].
A precedent for codification of patterns within and between melodies in folk music corpora has
long existed. In the Irish tradition, the existence of common patterns between tunes was noted
in general terms by 19th century collectors George Petrie and William Forde [17]. From the early
20th century onwards, American ethnomusicologist Samual Bayard developed the theory of ‘tune
families’: that many traditional melodies could be traced across space and time, in the manner of
a family-tree, to ur-melody originators [17, 18, 19]. This theory, which was further developed by
Bertrand Bronson’s work on English-language folk song melodies [18, 28], informs not only much
subsequent research in the Irish tradition, but in computational ethnomusicology generally [19].
A key foundational resource for our research is the body of work created by Breandán Breath-
nach. Breathnach was a collector and ethnomusicologist, and a key figure in the establishment
of Irish traditional music as an area of formal academic study from the mid-20th century on-
wards [29]. Although informed by the work of Bayard and Bronson, his work focussed narrowly
on the Irish tradition, seeking to derive conclusions directly from the music material rather than
imposing an external theoretical perspective [30].
From 1965-1977 Breathnach worked as a State-funded independent music collector and re-
searcher. During this time he wrote on Irish music for both popular and academic audiences,
founded and edited the journal Ceol, published three volumes of tunes from his collections, and
laid the groundwork for the publication of a further two volumes after his death in 1985 [29].
Despite following a relatively narrow policy for tune-inclusion informed by Breathnach’s cultural-
nationalist perspective [31], Breathnach collected, identified and indexed a corpus of over 5,000
unique traditional melodies [32], of which 1,208 were ultimately published in print.
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He developed an innovative card index system, which numerically indexed every melody in his
collection by a sequence of eight integer values, representing the diatonic pitch classes of the
first eight rhythmically accented notes [32]. This card index system, held today in the Irish Tradi-
tional Music Archive, was important in informing the preliminary phase of our research; and the
five published collections from the Breathnach collection form the basis for our working testbed
corpus [33, 34, 35, 36, 37].

Figure 3.1: An example from Breathnach’s card-index system (Breathnach, 1982)

From the 1980s onwards, the ‘tune family’ theory has been contested as overly simplistic, partic-
ularly in its application to Irish traditional music [17, 18, 38]. No consensus has emerged around
any single model of Irish traditional tune structure, but many researchers agree to the significance
of the pitch and duration of rhythmically accented and cadential notes in defining a superstructure
for a given tune, along which interchangeable short melodic and rhythmic blocks are arranged in
variable patterns [18]. These blocks or motifs are often common across multiple tunes and are
typically between 1/2-bar and 4 bars in duration [18].
Mid- and high-level patterns have also been established: Breathnach noted the importance of
the incipit, the first two bars of a given tune, in defining a melodic identity [32]. He also identified
the 4-bar phrase as a key melodic unit of Irish instrumental dance tunes, and noted that often
these phrases are internally arranged in a call-and-response structure [30]. As early as the 18th
century, writers had identified and commented on the common high-level patterns of repetition of
8 or 16 bar ‘parts’ or sections within a tune, most often AABB, AABA (sonata form), or ABAB [18,
30].
It should be noted that the tonality of music in the Irish tradition is generally modal in charac-
ter [30, 31]. This is evolving gradually as contemporary compositions integrate Western Classical
influences, and influences from other musical traditions, but still largely holds true [31]. Due to
this modal, essentially pre-Classical basis, along with the specific structural conventions outlined
above, it cannot be assumed that computational musicological analyses developed for Western
Classical, popular music, and non-modal Western European folk music will translate to the study
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of Irish corpora. As such, in the course of reading on computational ethnomusicology, we have
consulted pattern analysis work on non-Western folk music, such as [39, 40], alongside the more
widely-occurring work on Western classical and Western folk traditions.
Identification and analysis of all but the highest level musicological patterns was largely theoreti-
cal and/or anecdotal until the advent of computational musicology from the 1960s onwards [41].
In recent decades the field of computational musicology has expanded from a focus on popular
and Western classical music into the analysis of folk forms [42]. The application of computational
analysis to folk music particularly has given rise to the subfield of computational ethnomusicol-
ogy [19, 42], which has been the focus of the readings outlined below.
Contemporary computational ethnomusicology studies encountered in the literature survey gen-
erally divide into the following steps:

• Selection of music corpus for study (audio or symbolic representation)
• (Occasional:) Musicological annotation of corpus
• Conversion of musical information to machine readable representation
• Pattern extraction (can be global, local, or more usually a combination of both)
• Pattern analysis (usually multiple methods, the results of which are compared and aggre-

gated)
• (Occasional:) Evaluation of results by domain experts

The work of the Meertens Instituut in The Netherlands, a partner organisation (KNAW) in the
Polifonia project, has been a key reference point. Meertens has a tradition of computational
musicology research stretching back more than 40 years [19, 43]. Research by Dr Peter van
Kranenberg and Dr Berit Jaansen into pattern analysis of the Meertens MTC-ANN musicologi-
cally annotated corpus and the Dutch Song Corpus proved very informative: the numeric repre-
sentations of melodic sequences used in their studies directly informed our decisions re music
representation, which are described below.
Another important reference point was the Tunepal music information retrieval app, developed
and maintained by a team led by Dr Bryan Duggan in TU Dublin [44, 45, 46]. The app allows
users to record via a mobile device microphone, converts the audio to ABC notation via FFT, nor-
malises and simplifies the transcription into a text string. The string is searched across Tunepal’s
online ABC database of 10,000+ Irish tunes, using an edit distance algorithm [47] to return ranked
matches. The search results provide the tune name, MIDI playback of the melody, and transcrip-
tions in ABC and Western music notation.
A third foundational computational ethnomusicology reference was [48], which includes high-level
computational analysis of a subset of the Breathnach corpus. This work updates Breathnach’s
paper-based research into the computational era; along with Tunepal it is one of the few studies
tailored specifically to the modal tonality and non-Western structures within the Irish instrumental
dance music tradition. Ó Maidín’s numeric music representations and his calculations of global
key/mode through pitch class histograms were particularly useful in informing our work.
Additional reading involved a broad survey of approaches to music representation and pattern-
mining in contemporary computational ethnomusicology studies. It was found that studies gener-
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ally originate with either an audio corpus or a symbolic music corpus. If using a symbolic corpus,
the most popular format is MIDI [49]. Other formats encountered in the literature review include
MusicXML [50, 51], ABC music notation [52] and **kern [19].
This input corpus is most often converted to numeric feature sequence representation for pattern
extraction and analysis (e.g.: [19, 43, 46]. A minority of studies, such as [44, 52] convert to a text
string for pattern analysis. If the input corpus is made up of audio recordings, an extra conversion
step is necessary, converting to symbolic representation. Per [44, 45], this is usually achieved via
Fast Fourier Transform.
After conversion to feature sequence representation, secondary features can be derived from
the primary features of note onset, duration, and pitch [41, 53]. Widely used secondary fea-
tures include: pitch class; pitch interval class; key-invariant pitch; and key-invariant interval.
Global features can also be calculated from both primary and secondary features for a given
sequence [41, 53]. These include: total duration; total number of note events; pitch class his-
tograms; melodic contour; time signature. Studies generally make use of both local and global
data, though there is consensus in the literature that local values are more effective in pattern
extraction and analysis [19, 53].
Once a corpus has been converted to feature sequence representation, patterns can be ex-
tracted. In some studies, including those where the input corpus has been musicologically an-
notated, the corpus is searched for pre-identified candidate patterns and the closeness of result-
ing matches are ranked, most often via edit distance or compression algorithms (e.g.: [19, 43].
In other studies the candidate patterns must themselves be identified and extracted algorithmi-
cally from numeric feature sequences. Typically this is achieved using pattern-mining algorithms
(e.g.: [54] or n-grams (e.g.: [55, 56]).
Some studies calculate a single numeric weighted sequence, aggregating multiple features, then
extract patterns from this sequence. This approach is termed early fusion in the literature [49].
More commonly, patterns are separately extracted from multiple feature sequences, then anal-
ysed and compared. This approach is termed late fusion [49]. For both early and late fusion, pitch
and duration sequences are the most commonly-used inputs, but we also encountered studies
which derived patterns from melodic contour and interval sequences [41, 57].
Once patterns have been extracted from feature sequences, they typically are algorithmically
compared against each other and against the corpus, to extract and rank similar patterns. In
the literature this measurement of similarity is most often conducted via alignment algorithms
(e.g.: [19, 41, 44, 45]; occasionally using compression algorithms [58], n-gram probability models
(Hilleware et al, 2014) or by geometric analysis [59]. Some studies also engage musicologists
and/or musicians to subjectively judge the validity of identified patterns.

3.2 Methodology

The 1,208 melodies collected in the five published volumes of Breandán Breathnach’s Ceol Rince
na hÉireann were selected as a viable test corpus for our work. This material is monophonic and
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is entirely comprised on traditional Irish instrumental dance music. A transcription of the entire
collection into ABC notation was created by American musician and researcher Bill Black, and
this version of the collection is freely available from his website for re-use [60]. ABC notation is a
simple text format particularly used for monophonic folk music which includes a symbolic repre-
sentation of notes as letter names, and some optional metadata. This version of the collection,
which has previously been used in [44, 45, 46, 52], is the basis for our corpus.

Figure 3.2: Clean ABC corpus example: Lord McDonald’s reel

As a first step, the ABC corpus was manually cleaned. This work entailed: removal of non-valid
ABC characters; removal of standardisation of repeat markers; and removal of alternate tune
versions introduced during transcription into ABC notation. Root note (as chromatic pitch class)
was also manually assigned for every tune in the corpus– for use in calculation of key-invariant
secondary feature sequences. After this pre-processing work, the clean corpus was converted
from ABC notation to MIDI using EasyABC 1.3.7 [61]. The resulting dataset is available for re-use
(see Section 3.5).
The clean MIDI corpus was then converted to primary numeric feature sequences representing
pitch, onset, duration, and velocity. This conversion used the Music21 Python library [62] and
additional code, structured per Figure 3.3.
Additional secondary feature sequences were derived from these primary features, including:
interval, key-invariant pitch, pitch class, pitch class interval, inter-onset interval, bar number, and
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Figure 3.3: Flow chart 1: Corpus setup

simple melodic contour represented in Parsons code [63] The Parsons code values are formatted
per: 1 = upward pitch movement relative to previous note; -1 = downward movement relative to
previous note; 0 = repetition of previous pitch. All feature sequence calculations were carried out
in Python, with the output for each tune stored in Pandas [64] dataframes.

Figure 3.4: Feature sequence data for Lord McDonald’s reel (accent-level values highlighted)

Feature sequences were extracted at both note event- and accent-level (i.e.: for every note event
in every melody; and for rhythmically-accented notes only). These two parallel approaches follow
the consensus in ethnomusicological work on the Irish tradition: that patterns of accented notes
are of particular importance in defining a melodic superstructure, which is then filled in using
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lower level melodic motif patterns [18, 38, 65]. Duration-weighted versions of the pitch and pitch
class sequences have also been calculated, but have not yet been studied in our research so
far (duration weighting converts a sequence of feature values per note event to a sequence of
feature values per temporal unit, in our case per eighth note).

Figure 3.5: Visualisation of accent-level key invariant pitch class sequence for Lord McDonald’s
reel

We experimented with pattern extraction, firstly using a Python implementation of the PrefixSpan
sequence mining algorithm [66], and then using a simple n-gram extraction script based on that
of Triglia [67]. The focus has so far been on n-grams but it is our intention to revisit sequence
mining as work progresses. n-grams for 3 ≤ n ≤ 12 were extracted from every melody in the
corpus for five feature sequences: melodic contour, interval, pitch, pitch class interval, and pitch
class.
Initially concentrating on accent-level pitch class 6-grams (i.e.: patterns of six accented
pitch classes), unique n-gram patterns occurring in each melody were counted, ranked by
tf–idf [68, 69], and stored in Pandas dataframes. These dataframes were then were concate-
nated to provide a corpus-level table of unique n-gram patterns, ranked by idf.
This ranked database of patterns could now be used for pattern similarity searching. Initial testing
involved geometric distance measurements (Cosine, Euclidean), compression (zlib, Lempel-Ziv)
and edit distance algorithms (Levenshtein, Smith-Wateman, Gotoh, Damerau-Levenshtein). The
Damerau-Levenshtein algorithm [70] was selected for further investigation.
Ongoing exploratory work involves extraction of the top pattern(s) in a candidate melody as
ranked by tf–idf, per Figure 3.7. These patterns are used as input search candidates. Using the
Damerau-Levenshtein edit distance algorithm as implemented in the fastDamerauLevenshtein
Python library [71], similar patterns to the candidate(s) are identified in the corpus-level table of
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Figure 3.6: Flow chart 2: n-gram and tf-idf calculations

patterns. The Damerau-Levenshtein approach allows fuzzy searching via custom edit distance
penalties for sequence item rotations, substitutions, and for variations of sequence length. This
is important for Irish material, where, due to the oral nature of transmission in the tradition, there
can be great variation between transcriptions of the same or similar pieces of music [31].
Once similar patterns to our candidate pattern(s) are identified per the above, melodies across the
corpus in which any of the similar patterns occur are identified. The number of similar patterns
occurring within each of these melodies is counted: E.g.: If a melody contains three patterns
identified as similar by the Damerau-Levenshtein algorithm, its count value is three. The melodies
are ranked in descending order according to this count, and these results tables are currently
under evaluation as a potential indicator of overall melodic similarity.
The frequency of occurrence of each pattern in each melody is not yet included as a similarity
metric, though this is intended as the next addition to the process.
A GitHub repository containing work-in-progress code to run the methodology above in full is
available here as a Polifonia deliverable D3.1 component.
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Figure 3.7: Visualisation of frequent pitch class 6-grams for Lord McDonald’s reel

Figure 3.8: Flow chart 3: deriving n-gram-based melodic similarity results
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3.3 Results

Results for test melodies McDonald’s (reel), Anderson’s Reel, and Anac Cuan have returned
musically plausible melodic connections, as informally verified by a domain expert.
For example, Figure 3.9 lists melodies containing similar 6-gram patterns to the pitch class se-
quence (2, 7, 2, 7, 4, 7), which, per Figure 3.7 above, occurs twice in Lord McDonald’s (reel).

Figure 3.9: n-gram-based similarity results for Lord McDonald’s (reel)

Figure 3.10 shows the melody of the top-ranked tune, Tim Mulloney’s (Reel), which contains five
similar accent-level pitch class patterns to (2, 7, 2, 7, 4, 7), as measured by Damerau-Levenshtein
distance. This may be compared to the melody of Lord McDonald’s (reel), as illustrated in Figure
3.2, which exhibits obvious melodic similarity.
The importance of the opening 4 bars in defining the theme of Irish traditional melodies will be
investigated further as, from our exploratory work, patterns such as the candidate under investi-
gation above, which occur early in a melody, appear to have the greatest significance in defining
similarity. This corresponds with Breathnach’s observations on melodic structure in traditional
Irish instrumental dance tunes [30]. Conversely, patterns occurring outside of the candidate
melody’s opening thematic section have also been tested, and in these cases the similarity re-
sults returned were not verifiable by domain expert.
It should be noted that further work is required to build upon the initial exploratory findings re-
ported and discussed above. In particular, we plan to gather a small dataset of known links
between pieces (“tune families” as already described), and use it for objective/quantitative evalu-
ation of performance.
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Figure 3.10: Tim Mulloney (reel)

3.4 Root Note detection

Accurate detection of pitch class patterns relies fundamentally on accurate key-invariant pitch
sequence data. Initially Breathnach’s approach was adopted, generating key-invariant pitch se-
quences relative to the final note of the melody, which was assumed as the root [32]. This was
revisited due to concerns over accuracy, and the root of each melody in the corpus was manually
assigned by a domain expert. During this pass, the corpus was also cleaned to remove non-
valid ABC characters, inaccurate repeat markers, and additional versions of the melodies which
had been appended during transcription to ABC format. This work produced a clean, annotated
version of the ABC corpus, which is provided as a component for Polifonia deliverable D3.1.
Working on the clean corpus, Breathnach’s final-note-as-root approach was found to agree with
the expert-assigned root in 71 percent of cases. Transcriber-encoded root note values were also
available from the ABC Notation metadata, and were found to agree with the expert-assigned
root in 86 percent of cases. The Music21 Python library contains a built-in implementation of
the Krumhansl-Schmuckler pitch class intersection algorithm [72], with various built-in weightings
available as listed below. Theses algorithms were individually tested on the corpus, but all had
under 80% agreement with the expert-assigned root values. It is thought that the low accuracy
of the Music21 algorithms when applied to the Irish corpus were due to the modal nature of a
significant proportion of melodies in the Irish tradition, as discussed in [30] and [46]. As the
Music21 algorithms function on the basis of tonal major and minor keys only, it is unsurprising
that they operate with reduced accuracy on modal music. Due to the relatively low accuracy
levels of these existing, easily accessible options for determining root values, a new approach
was instigated as detailed below.
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Note: The Humdrum Toolkit Keycor key detection tool, as described in [73], runs the same
Krumhansl-Schmuckler-based algorithms as Music21 via a command-line interface, and offers
simple access to customisation options such as user-defined weightings for non-tonal keys. It is
intended to run Keycor key detection on the Irish corpus and to include the results in the above
comparison.
The Krumhansl-Schmuckler pitch class intersection algorithm [72], as implemented in the Mu-
sic21 Python library [62], was used to detect root values for all melodies in the corpus. The
algorithm was run five times, each with a different set of weights applied; additional root detection
metrics were also calculated as listed below.
This data was saved in a table with each measure as a column, for input into an ensemble
method machine learning algorithm. Figure 3.11 shows a graphical depiction of the proposed
architecture. Each tune was processed to extract numerous aspects, as seen in the Figure, and
this was also reported above.

Figure 3.11: Proposed Ensemble Method of Machine Learning for Root Note Detection

The features in figure 3.11 have been divided into two categories: 1) those extracted using
state-of-the-art techniques, and 2) those extracted using supplementary methods. The following
is a full description of each feature:

State-of-the-art Key finders as features:
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• Krumhansl-Shmuckler is the result of the Krumhansl-Shmuckler key finding algorithm,
with default/original weights [72].

• simple_weights is the result of the Krumhansl-Shmuckler key finding algorithm, with Craig
Sapp’s simple weights from keycor toolkit[73].

• Aarden Essen is the result of the Krumhansl-Shmuckler key finding algorithm variation with
Aarden-Essen weights [74].

• Bellman Budge is the result of the Krumhansl-Shmuckler key finding algorithm variation
with Bellman Budge weights [75].

• Temperly Kostka Payne is the result of the Krumhansl-Shmuckler key finding algorithm
variation with Temperly Kostka Payne weights [76].

Additional Features:
• As transcribed is the pitch class of the transcriber-assigned root, extracted from MIDI file.

It is worth noting that this is human-supplied, but can be in error relative to our expert
annotations, thus we are justified in using it as a feature in predicting the true key

• Final note is the pitch class of the final note in the melody.
• Freq note is the most frequently occurring value in the note-level pitch class sequence.
• Freq weighted acc is the most frequently occurring value in the duration-weighted accent-

level pitch class sequence (see section 3.2 above).
It was important to explore the data to get more insights into it. Therefore, Exploratory Data
Analysis (EDA) was conducted to understand the underlying structure and relationship among
different features used in the dataset. For a machine learning model, it is preferable to have a
balanced dataset. Our proposed model will be predicating a key, and therefore, it was important
to understand the overall coverage of each key in the whole corpus. Table 3.1 shows the total
count of distinct keys assigned to melodies in the corpus.

Table 3.1: Coverage of distinct root notes in the whole corpus
Expert Assigned Root Note Symbolic Representation Total Count
2 D 481
7 G 415
9 7 181
4 E 126
0 C 14
11 B 6
5 F 1

A number of methods exist to assist in determining the root note of a melody. However, none of
the described methods are capable of accurately determining the root note to a tune. We saw in
the previous paragraph that there could be a lot of factors at play when determining the root note
of a melody. Important characteristics must be chosen for an ideal set of features for a machine
learning model. Furthermore, feature selection is critical because more features do not always
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imply better outcomes. As a result, choosing fewer features that are more correlated may improve
the overall results. As a result, to choose the subset of the most relevant attributes, a filter method
was applied. After the features are ready, a model can be developed around them. Filtering
was done in this experiment using a correlation matrix, which is most typically employed with
Pearson correlation. As illustrated in Figure 3.12, we created a Pearson correlation heatmap. To
better understand the relationship between features and independent factors, a thorough study
was carried out. Finally, only those features were considered that have a strong correlation
with a class label (expert annotation). The correlation values of each variable can be observed
in the heatmap given in Figure 3.12. Based on strong correlation, the selected features were
"Krumhansl-Shmuckler", "simple weights","Aarden Essen", "Bellman Budge","Temperly Kostka
Payne", "as transcribed", "final_note", "freq note".

Figure 3.12: A Correlation heatmap of dependent and independent variables

Two fundamental machine learning classification algorithms, Decision Tree and Random Forest
classifiers, were used for the trials. There were 1220 records in the dataset, and we used 80
percent (979 records) for training and 20 percent (245 records) for testing. The results of each
classifier are presented separately below.

Decision Tree:
Decision Tree (DT) offer different parameters for tuning to enhance its accuracy. For example,
one most important parameter is related to finding a splitting parameter. There are a couple of
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commonly known methods i.e. information gain and Gini index. There is not a large difference
between them, however, the Gini-index is less computation-intensive as it does not compute
logarithmic values and it also minimizes the misclassification rate. Therefore, in this experiment,
we used the Gini index. However, the information gained should be checked to ensure that it has
no negative impact on the overall results. The max depth of the tree is the next hard parameter.
A high value for the max depth parameter may cause the model to overfit. Similarly, limiting its
value to a low value may cause your model to miss trends and patterns in the dataset, i.e. to
underfit. However, after running our model several times and observing the best results, we set
max depth to 10. With these settings, we ran our model and were able to attain an accuracy of
88 percent for melodic root note classification.

Random Forest:
Random Forest (RF) is another cutting-edge classifier that can be utilized for a variety of clas-
sification problems. Random forest performance, like DT, can be improved by tweaking a few
parameters. One of the most essential characteristics in RF, for example, is the number of trees
used. We started with a number of trees of 1 and increased step by step until we reached the
best accuracy at 9 trees. We found that as the number of trees increased over 9, the model’s
accuracy remained constant. As a result, the total number of trees has been set to nine. The
relationship between no of trees and the accuracy of the model is shown in Figure 3.13. It can
be observed from the figure that increasing number of trees is not affecting the overall accuracy
of the model.

Figure 3.13: The line graph shows the relationship between number of trees (n_estimators) and
accuracy of the Random Forest model for Root note detection

Finally, the classification accuracy was measured, and it was found to be 99 percent. The Figure
3.14 shows the classification report for each key. The outcomes are self-evident. On this dataset,
our proposed ensemble approach performs remarkably well. However, there are a few concerns
that should be addressed before drawing any conclusions: 1) this model should be tested on
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other datasets, 2) the class distribution is not balanced, so enough datasets of each root note
could be generated either manually or synthetically, and 3) parameter tuning should be done in a
more rigorous manner.

Figure 3.14: Precision, recall, and F1-measure of Root note detection of a Melody using
Random Forest classifier

3.5 FAIRness and reproducibility

Our work in this chapter complies with the FAIR principles and is according to the Polifonia First
Data Management Plan (D7.1).
As described, the central data used in this research is the Ceol Rince na hÉireann corpus. A
transcription of the entire collection into ABC notation was created by American musician and
researcher Bill Black, and this version of the collection is freely available [60]. It has been widely
used in previous work. We have carried out some cleaning and conversion to MIDI (see above).
Thus our data is a secondary source as per D7.1 Section 2.1.1. The changes will be notified to
the “upstream” maintainer.
The data model here is a mere collection of files in MIDI format. Such a file is effectively an event-
list (where each event specifies time, pitch, velocity, and duration of a note) plus some optional
meta-data including author, title, and key.
The resulting corpus is available from our GitHub repository https://github.com/
polifonia-project/folk_ngram_analysis for findability and accessibility. Since the
data is in a common format (MIDI), it is interoperable and reusable. The repository has a Zen-
odo identifier (https://zenodo.org/record/5768216#.YbNExFnLe01), which ensures
persistent access to the version of the data described here. The dataset is released under a per-
missive Creative Commons license. Our experiments and results can be reproduced using our
freely-available code and data. However, our early evaluation of the system involves informal
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evaluation by experts, and this aspect is not intended to be reproducible. In future, it is hoped to
codify some expert judgements in a way that allows reproducible evaluation of the research.
The data is a corpus, not a dataset in the terms of D7.1 Section 2.1.2, since it has not been
converted to a Knowledge Graph or Linked Data format. However this is envisaged as part of
future work.
No personal or sensitive information is involved in this strand of research and so there are no
security or privacy concerns.

27



Deliverable D3.2 Analysis of music repositories to identify musical patterns
V1.0 20/12/2021

4 Patterns in Dutch traditional music

4.1 Introduction

In this chapter, we introduce the background for the work that will be done on patterns in Dutch
traditional music. Since this work, which is connected to the TUNES pilot, only started per
September 2021, there are no results to report, as of yet. We will introduce the data set and
provide a brief overview of previous work we will build on.

4.2 Data

4.2.1 Dutch Song Database

The Dutch Song Database is a digital repository documenting Dutch song culture throughout the
ages [77]. The main feature of the database is the availability of collected references to occur-
rences of Dutch songs. At the moment, the database contains metadata on c. 180 thousand
occurrences of Dutch songs in a variety of sources dating from the twelfth century up to the
present day. The database documents many kinds of (folk) songs, including love songs, satirical
songs, beggar songs, psalms, other religious songs, children’s songs, St. Nicholas songs and
Christmas songs. The main sources in which these songs were found are songbooks, song-
sheets (broadsides), song manuscripts, and fieldwork recordings. The cataloged record for each
song contains information about the source in which the text and/or the melody occurs. In most
cases direct links are provided to the complete song text, to a scan of the source, to the notated
sheet music, or to a recording of an individual song. The database can be accessed by the
general public through an online interface at http://www.liederenbank.nl.

4.2.2 Meertens Tune Collections

A large number of song texts and melodies have been digitized and are currently accessible.
Through the search facilities of the web interface of the Dutch Song Database, the melodies can
be studied individually. To facilitate corpus studies, the melodic data sets have also been released
separately as the Meertens Tune Collections (MTC) [78]. The most important data sets for the
current project are MTC-FS-INST-2.0 and MTC-ANN-2.0.1. The former contains full melodic
contents and meta data for c. 20.000 melodies. The latter contains a rich set of annotations for
a small selection of 360 melodies in 26 tune families. These annotations include occurrences of
melodic patterns as perceived by collection specialists of the Meertens Institute.

28

http://www.liederenbank.nl


Deliverable D3.2 Analysis of music repositories to identify musical patterns
V1.0 20/12/2021

For both MTC-FS-INST-2.0 and MTC-ANN-2.0.1, sequences of melodic features have been pre-
computed and made available in a Python module MTCFeatures.1

4.3 FAIRness and reproducibility

The data and code are open, as discussed above. The pre-computed features have been re-
leased under a CC licence (Attribution-NonCommercial-ShareAlike). The data are available from
Zenodo,2. The interoperability of this data set will be improved in future work in the TUNES
and INTERLINK pilots. Both data and meta-data adhere to common data standards, notably the
json-standard.

4.4 Previous Work

In a study on melodic similarity among folk songs, we examined the role of different musical
features for the human categorisation of songs into tune families [79]. We asked the collection
specialists of the Meertens Insitute to rate the similarity of pairs of melodies from the same tune
family. The specialists rated the melodic similarity for various dimensions: contour, motifs, rhythm,
and lyrics. From these ratings it became evident that the motivic similarity is the prevalent kind
of similarity for the collection specialists to recognise a melody as member of a tune family. This
finding is a strong indication to focus our research on melodic motifs, or melodic patterns. Appar-
ently, these play an important role in establishing the perceived identity of a melody as member
of a tune family. We asked the specialists to identify these motifs and annotate their occurrences
in the songs. This resulted in the annotations that are included in data set MTC-ANN-2.0.1,
consisting of more than thousand motif occurrences in more than hundred motif classes.
We performed a retrieval experiment [80] in which we evaluated the retrieval of tune family mem-
bers from a large database of more than 4.800 melodies. The matching was based solely on
sequential occurrence of melodic patterns. In total, we considered 15 patterns that were manu-
ally defined by closely examining the annotated patterns. We reached a recognition rate of 0.75,
meaning that for 75% of the queries a member of the same tune family was at the first rank in
the result list. Furthermore, we found that for 90% of the queries a member of the same tune
family is among the first 10 melodies in the result list. This implies that occurrences of a small set
of melodic patterns provide enough information to identify a query melody as member of a tune
family.
Mining for Maximally General Distinctive Patterns (MGDP) [81] is another approach to gain better
understanding of a melodic corpus in terms of recurring patterns. MGDPs are patterns that are
overrepresented in a certain corpus of melodies compared to an anti-corpus. We performed this
analysis for the MTC-ANN-2.0.1 data set [82]. This resulted in a set of 22 patterns in 14 tune
families. These patterns correspond quite well with human annotated patterns, but the exact

1https://pvankranenburg.github.io/MTCFeatures/
2doi: 10.5281/zenodo.3551003
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interpretation of the relation between the mined MGDPs and melodic motifs in the traditional
conceptualisation remains a challenge.
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5 A search-engine framework to mine patterns from digitised
scores

The work presented in this section is a bit different than the other parts of this document, focusing
on the development of a search framework capable of extracting patterns from several dimensions
of musical content, not a statistical analysis of patterns in a given corpus.

5.1 Introduction

Search engines are essential tools for information retrieval in large digital libraries. They help
to retrieve a ranked list of relevant content for a given query and they usually rely on scalable
indexing structures and algorithms that allows instant response [83]. Notable successes have
been obtained for text-based documents, and extended to multimedia collections [84, 85, 86].
Music libraries currently lacks well-founded information retrieval tools and content-based music
retrieval still remains as a challenge.
Musical content is intricate and hard to describe textually in natural terms. Temporal aspects
(tempo, metric, synchronisation) complicate the attempts to provide a synthetic representation.
Moreover, musical contents are extremely versatile, with a wide range of aspects that yield a
boundless number of genres, styles and forms. Last but not least, periods and locations (of com-
position or interpretation) also increase the variability of the material. When it comes to digital
representations, one is confronted to highly diverse encoding paradigms. Music in audio for-
mats are the most common. Symbolic representations, on the other hand, are oriented towards
content-based description of musical pieces. Music scores are the most elaborated way of de-
scribing music at this symbolic level. Digitally-encoded scores are often represented in the format
of piano roll [87], MusicXML [88] or MEI [89, 90] (XML-based variants for scores).
The MusicSearch framework lay the foundations of a fully-functioning and scalable faceted search
engine (FSE) for music score collections, supporting explorations and discovery of scores of inter-
est in large collections, based on features such as melodic, harmonic or rhythmic patterns, style,
structure, instrumentation and metadata. Potential users are music researchers, instructors, or
anyone that is interested in deep exploration of musical contents.

5.1.1 Related work

Our approach relies on an abstract music content model, from which musical features are ex-
tracted and represented in a text-based format to be integrated into a standard search engine,
ready for pattern querying. The abstract content model consists of a tree-based decomposition
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of a music score and the associated grammar. This draws heavily from [91, 92, 93], which in-
troduced into the musical literature some ideas and tools from the fields of databases systems
and computer linguistics (e.g., hierarchical decomposition of musical content and context-free
grammars). Our work also relies on libraries like Music21 [94] to extract some features.
The idea to benefit from an inverted index and splitting musical sequences into n-grams has been
experimented in several earlier proposals [95, 96, 97, 98]. While pattern mining is a long-standing
effort in the Music Information Retrieval (MIR) community [96, 99, 100, 101], developing full-
featured search engines is an emerging topic, because it’s only during the last decade that large
collections of digital music have been produced and made widely available. Some preliminary
initiatives, such as Peachnote [102], only allowed for exact search. Recently, [103] pushed the
state-of-the-art further, presenting a full language dedicated to searching into symbolic scores.
However, it is based on regular expressions, which cannot scale to large collections, and the
search input requires typesetting XML-based code. Our framework is scalable and features a
modern and user-friendly interface.

5.1.2 Global architecture of the MusicSearch framework

The MusicSearch framework relies on a Music Content Model, which borrows from the principles
of music notation, reduced to the aspects unrelated to the layout of music scores. Although
strongly influenced by the Western music tradition, this model is general enough to represent a
large part of the currently digitised music. We call Music Content Description (MCD) a description
of a music document according to this model. It offers several operations that support major
functionalities of a search engine, namely transformations corresponding to the classical linguistic
operations in text-based search engines, and ranking. A set of features can be obtained from a
MCD thanks to the above mentioned transformations. The feature set presented in the following
is by no means exhaustive, and the framework design lets open the possibility to design other
features (for instance, harmonic, texture or timbre annotations). The last parts are the core
modules of a search engine: indexing, searching, ranking, and on-line identification of fragments
that match a pattern query.

5.2 The Music Content Model

The Music Content Model (MDM) relies on music notation, seen as an expressive formal lan-
guage. The MDM provides an abstract vision of digital music documents as structured objects,
and supports indexing and search functionalities.

Pitches

We define the domain of musical symbols for representing pitches as follows:

Definition 1 (Domain of musical symbols). The domain Mus of musical symbols consists of
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1. the set of pitch names e (A4, C5, F#3, etc.),
2. the rest symbol, noted r,
3. the continuation symbol, noted _ .

Rhythm structure

Music is a temporal organisation of sounds inside a bounded time range. Notes fall on a set of
positions that defines a discrete partitioning of this range. More precisely, the grid results from a
recursive decomposition of temporal intervals, yielding a rhythmic organisation which is inherently
hierarchical.
Rhythmic decomposition rules can be expressed in a well-known formal language, namely
Context-Free Grammars (CFG) [92]. As an illustration, the following grammar G = (V,Mus, R, S)
is sufficient to model the rhythmic organisation of the example on Figure 5.1 (with time signature
4/4). The set of non-terminal symbols is V = {S,m, b, q}, where S (the initial symbol) denotes a
whole music piece, m a measure, b a beat and q a quaver. The terminal symbols belong to Mus,
the set of music symbols (Def. 1), and R is the following set of rules:

1. R0 : S → m|m,S (a piece of music is a sequence of measures)
2. r1 : m→ b, b, b, b (a measure is decomposed in four quarter notes / beats)
3. r2 : b→ q, q (a beat is decomposed in two quavers / eighth note)
4. A set Rm of rules Rv

e : v → e where e ∈ Mus is a musical symbol.

Rule R0 and the set Rm together determine the temporal structure of music:
• (i) a time range in divided in equal-sized measures, and ii) events only occur at timestamps

determined by a parse tree of the grammar. Unambiguous grammars that feature R0 and
Rm are called music content grammars in the following.

Given a music content grammar, we can use its rules to build a hierarchical structure (a parse
tree) that models the rhythmic organization of a sequence of musical events.

Definition 2 (Monodic content descriptor). Let G = (V,Mus, R, S) be a music content grammar.
A (monodic) content descriptor is a parse tree of G. The inner nodes constitute the rhythm tree,
and the leaves are the (musical) events.

From a content descriptor, it is easy to infer the following properties that will serve as a basis for
the indexing process: pitch sequence, temporal partition, and event sequence.

Definition 3 (Pitch sequence). Let D be a content descriptor. The sequence of leaf nodes values
in D is a string in Mus∗ called the pitch sequence of D and noted PSeq(D).

Given a time range I, a content descriptorD defines a partitioning of I as a set of non-overlapping
intervals defined as follows.
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Figure 5.1: The content descriptor for the first notes of the German anthem, Das Lied der
Deutschen by Joseph Haydn (1797), with its events and the rhythmic tree.

Definition 4 (Temporal partition). Let I = [α, β[ be a time range and D a content descriptor. The
temporal partitioning P (I,D) of I with respect to D is defined as follows. Let N be a node in the
rhythmic tree of D (recall that the rhythmic tree is D without the leaves level).

1. If N has no children, P (I,N) = {I}
2. If N is of the form N(N1, · · · , Ni), I is partitioned in n sub-intervals of equal size s = β−α

n

each: P (I,N) = {I1, · · · , In} with Ii = [α + (i− 1)× s, α+ i× s[

This partitioning associates to each internal node N of a content descriptor a non-empty interval
denoted itv(I,N) in the following and a duration denoted dur(I,N). Each event (leaf node)
covers the time interval of its parent in the rhythmic tree.
We adopt the following convention to represent temporal values: the duration of a measure is 1,
and the music piece range is n, the number of measures. Both the duration and interval of a node
result from the recursive division defined by the rules. The duration of a half note for instance is
1
2
, the duration of a quaver is 1

4
, etc. The duration of a leaf node (event) is that of its parent in the

rhythmic tree.
One can finally obtain the event sequence by combining both information.

Definition 5 (Event sequence). Let D be a content descriptor and [L1, · · · , Ln] be the pitch
sequence of D. Then the sequence [(L1, dur(L1)), · · · , (Ln, dur(Ln))] where we associate to
each leave its duration is the event sequence of D, denoted ESeq(D).

Each element in ESeq(D) associates a symbol from Mus and a duration. One obtains the
sequential representation commonly found in music notation. An explicit representation of the
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hierarchical structure is however much more powerful than the sequential one. We can use
the tree structure for various simplifications, compute similarity measures (see below), or infer
strong or weak timestamps from their corresponding branch in the tree. More generally, this
general framework allows to derive features from content descriptors by extracting, transforming,
normalizing specific aspects pertaining to rhythm, domain values, or both.

Non-musical domains, polyphonic music

Our modelling perspective can be extended to other value domains, beyond the class of music
symbols, such as opera with lyrics. The content is then modelled with two content descriptors
over distinct values domains (e.g., Mus and syllables, but chords, textures, or other types of
annotation can fit in), which may differ.
The representation of polyphonic music simply consists in a set of monodic content descriptors
sharing a same grammar.

Definition 6 (Polyphonic content descriptor). Given a music content grammar G, a (polyphonic)
content descriptor is a set of parse trees of G such that the number of derivations of rule R0 (in
other words, the number of measures) is constant.

5.3 Features extraction

Several features can be produced from a music content descriptor, such as a chromatic interval
feature, a diatonic interval feature, a rhythm feature, and a lyrics feature. This list is not closed,
features pertaining to other aspects of music representation (e.g., harmonic) or features obtained
from an analytic process may be added, as long as they can be derived from our description
model. However, those features are designed for a text-based search engine, each (type of)
feature must therefore fulfill the following requirements:

• There exists an analyzer associated to each type of feature, that takes a content descriptor
as input and produces the feature as output.

• There must exist a serialization as a character string, which makes possible the transposi-
tion of queries to standard text-based search supported by the engine.

• Finally, each feature must be equipped with a scoring function that can be incorporated into
the search engine for ranking purposes.

We use the famous song My way as an example to illustrate our features (see Fig. 5.2)1.

1The song is the English version of the French song Comme d’habitude, written by Claude François and Jacques
Revaux (1967). The English lyrics are by Paul Anka (1969).
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Figure 5.2: Content descriptor of My way

5.3.1 Chromatic interval feature (CIF)

The feature analyzer ACIF relies on the following simplification of a pitch sequence:

1. All repeated values from PSeq(D) are merged in a single one.
2. Rest and continuation symbols are removed.

One obtains a simplified descriptor that essentially keeps the sequence of non-null intervals.
Fig. 5.3 shows such a sequence, resulting from the analysis of My way. Note that the two con-
secutive A4 near the end have been merged, and all rests removed.

� �� ��� ��� � �� � ��� �
Figure 5.3: My way, after the feature extraction by the appropriate analyzer.

Definition 7 (Chromatic Interval Feature). Given a content descriptor D, the chromatic interval
feature (CIF) ACIF (D) is the sequence of the semitones gaps between two consecutive pitches
in the simplification of PSeq(D).

When the CIF analyzer ACIF is applied to the sequence of Fig. 5.3, one obtains the following
feature.

< 9,−9, 9,−2, 2,−9, 9,−2, 2,−2, 2,−2,−1 >
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Figure 5.4: My way, transposed.

It is worth mentioning that we may obtain the same CIF from initially distinct music descriptors.
Fig. 5.4 shows for instance a transposed version of My way, more suitable to a female voice. The
CIF is invariant. The feature is also robust with respect to more involved changes. Fig. 5.5 shows
the initial version of the tune. The lyrics in French imply a slightly distinct rhythmic structure.
However, the sequence of intervals remains identical, and so does the CIF.
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Figure 5.5: French variant of My way (Comme d’habitude, first phrase).

The descriptors shown in Figures 5.2, 5.4, and 5.5 match with respect to their respective chro-
matic features. The matching of two descriptors is highly dependent on the analyzer.
Among other possible features, we could have taken the sequence of pitch names, in which case
transposed scores would not match (we would miss results that seem intuitive). Another feature
would accept unisons (i.e., repeated notes yielding intervals with 0 semi-tones). Then, in our
example, the French version (Fig. 5.5) would no longer match with the English version of My way.

5.3.2 Diatonic interval feature (DIF)

We keep the same simplification phase already used forACIF . Fig. 5.6 shows the second phrase,
which slightly differs from the first one. If we compute the chromatic interval feature, one obtains
the following sequence:

< 8,−8, 8,−1, 1,−8, 8,−1, 1, 4,−2,−5, 3,−1 >

which is distinct from that of the first phrase (see above).
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Figure 5.6: My way, second phrase.

If we count the number of steps between pitches, and no longer the number of semi-tones, we
observe that the second phrase starts with a 5-steps interval (from E4 to C5), continues with a
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descending one-step (from C5 to B4), etc. Counting the number of steps between the nominal
value of pitches yields what is known as diatonic intervals in music theory. In this perspective, the
first interval of the first phrase and of the second phrase do match: they are both sixths, major in
the first case, minor in the second one. So does the second interval (a second, minor in the first
case, major the second case). Both phrases are essentially similar, and would be perceived as
such by a listener.

Definition 8 (Diatonic Interval Feature). Given a content descriptor D, the diatonic interval fea-
ture (DIF) ADIF (D) is the sequence of interval names between two consecutive pitches in the
simplification of PSeq(D).

Assuming that the set of interval names is {U(nison), S(e)c(ond), T(hird), Fo(urth), Fi(fth), Si(xth),
Se(venth) and O(ctave)} and that an ascending interval is coded with a +, a descending with a
−, one may apply this definition to the descriptor of Fig. 5.3. The following sequence is obtained:

< Si+, Si−, Si+, Sc−, Sc+, Si−, Si+, Sc−, Sc+, Si−, Si+, Si−, Si− >

The first and second phrases of My way match with respect to this feature, and continue to match
with any transposition (Fig. 5.4) or rhythmic variants (Fig. 5.5).

5.3.3 Rhythmic feature (RF)

We rely on a simplified rhythmic representation. Given a content descriptor R, its temporal parti-
tion (see Def. 4) gives the respective durations of the events. Consider once again the first phrase
of My way (Fig. 5.2), ignoring the initial rest. It starts with a quarter note, followed by a half-note:
the ratio (i.e., the multiplication to obtain the second duration value from the first one) is 2. Then
comes a 1-eighth duration, hence a ratio equal to 1

8
, followed by three eight-notes, hence three

times a neutral ratio of 1, etc. The sequence of these ratio is our description of rhythm.

Definition 9 (Rhythmic feature). Given a content descriptorD and its leaves [L1, L2, · · · , Ln], the
rhythmic feature (RF) ARF (D) is a sequence [r1, · · · , rn−1] such that ri =

dur(Li+1)
dur(Li)

, ∀i ∈ [1, n−1].

The rhythmic feature of the first phrase of My way (ignoring the initial rest) is

< 2,
1

8
, 1, 1, 8,

1

8
, 1, 1, 8,

1

8
, 1, 1, 8,

1

2
>

5.3.4 Lyrics feature (LF)

The lyrics feature is the simplest concept : it consists of the text of the tune (if any). Since it
consists of purely textual information, it is subject to the traditional transformations (tokenization,
lemmatization, etc.) operated by search engines.
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Figure 5.7: A global view of the MusicSearch architecture, for symbolic music.

5.4 Implementation

5.4.1 Implementation of MusicSearch framework

The current implementation of the MusicSearch framework is illustrated on Figure 5.7. The main
components are: 1) an ETL (Extract/Transform/Load) process that receives music documents
and produces their musical features, 2) an Elasticsearch server2 that indexes music features,
supports searches and ranks results, and 3) implementation of several utility functions, including
the matching occurrences identification. All these modules are written in Python.

5.4.2 Reproducibility and Open Science

A live version of the search engine is available on the Neuma platform3, where the pattern mining
can be experimented on a wide range of opera, from Bach’s chorals to more recent French
popular tunes. We also offer a publicly available Docker image4. The work is fully reproducible,
with open access to code on Github5 under the GNU General Public License v3.0.

5.5 Conclusion

The framework presented in this section is detailed in a journal article currently under revision.
Some details omitted in this report are presented in this article, which focuses on the search-
engine aspect (and not only on pattern-mining).
While we simultaneously develop the software implementation and the theoretical model, we
think it is already mature enough to be used as a large-scale pattern-mining tool. As we men-
tioned above, some patterns dimensions (features) have been developed, some new ones may

2Elasticsearch Engine: https://elastic.co
3See http://neuma.huma-num.fr.
4Docker Server image: https://hub.docker.com/repository/docker/traversn/scoresim
5Components implementation: https://github.com/cedric-cnam/scoresim
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be written (e.g., to fit with the work from others Polifonia members). The extensibility and user-
friendliness of this search engine make it a tool of choice for the Polifonia members (and, more
generally, the MIR community).
However, some work on the dataset to be searched and the formats to be included in this frame-
work are on-going. They will lead to very interesting statistical analysis reports, about various
corpora (such as the ones from Neuma).
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6 Harmonic similarity for the INTERLINK pilot

The work described in this chapter introduces a novel harmonic similarity function based on
recurring chord structures that are shared by musical pieces. This method is part of musilar
– a larger computational ecosystem for music similarity, that is currently under development for
the INTERLINK pilot. This contribution was first tested and utilised for the implementation of the
harmonic similarity agent that was presented, together with a prototype of the first Polifonia KG,
at the Sonar Festival in October 2021, in the context of the Music and AI event1.

6.1 Related work

Harmonic progression is one of the cornerstones of tonal music composition and is thereby es-
sential to many musical styles and traditions. From a computational perspective, the ability to
automatically establish links between musical pieces sharing harmonic patterns can potentially
support information retrieval pipelines (e.g. querying a music corpus using harmonic progres-
sions), the detection of cover songs (performances of the same composition) or plagiarism, but
can also be used for music exploration and recommendation, the analysis of large musical cor-
pora to test musicological hypothesis (or to collect insights to inform this process), and so forth.
Despite the numerous applications enabled by these approaches, the design of novel algorithms
for harmonic similarity has not received particular attention in the last ten years. To the best of
our knowledge, the current state of the art methods for this task are still those pioneered by Baas
de Haas, namely, the tonal pitch step distance (TPSD) [104] and the chord sequence alignment
system (CSAS) [105], which are outlined as follows.
The TPSD is a perceptually and musicologically-grounded distance function generalising Ler-
dahl’s Tonal Pitch Space (TPS) [106] – a model of tonality that fits musicological intuitions and
correlates well with empirical findings from music cognition [107]. More precisely, the TPSD im-
plements a scoring mechanism using a part of the TPS as the main musical model to calculate
the distance between two arbitrary chords. Intuitively, given two chords, the function considers the
number of steps on the circle of fifths between their roots, and the amount of overlap/agreement
between the corresponding chord structures, as well as their relation to the global key. When
generalised over an entire chord progression – an ordered sequence of chords, the TPS dis-
tance is computed between every chord and the key of the sequence. This originates into a step
function profiling the harmonic properties of a musical piece. As a consequence, the distance
between two chord progressions is defined as the minimal area between their step functions over
all possible horizontal circular shifts. This is done to take into account the “shape of the function”
rather than their actual value – an effective way to achieve transposition invariance.

1https://aimusicfestival.eu
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Figure 6.1: Schematic illustration of the main steps for the computation of the proposed
harmonic similarity from two chord progressions.

Another notable approach is the Chord Sequence Alignment System (CSAS), using string match-
ing techniques to compute similarity scores between strings (sequences of symbols) representing
chords or distances between chords and key. In particular, the local alignment algorithm by Smith
and Waterman [108] is used to locate and extract a pair of areas/regions from two given strings
(generally defined as sequences of arbitrary symbols) that exhibit the highest similarity with each
other. Thereafter, using a dynamic programming method, a similarity score for the two progres-
sions is calculated based on the minimum number of elementary operations (deletion, insertion
or substitution of a symbol) needed to transform one sub-string into the other.
From a systematic comparison of the two methods on the cover detection task, using chord
encodings of different granularity, CSAS was found to achieve better performance than TPSD
[107]. Nevertheless, TPSD has a more intuitive formulation, stronger musicological interpretation,
and is also more efficient compared to the quadratic time complexity of CSAS.
In addition to the former approaches, [109] proposed a system using a generative grammar of
tonal harmony to formally describe chord sequences. In doing so, a parser defined from the
grammar would produce concrete syntactic trees representing harmonic analyses of a given
chord progression. To enable the comparison of two parse trees, resulting from different pieces,
the authors defined a method that constructs a tree containing all their shared tree structures.
This allows to quantify tree-specific properties that can be further analysed yielding several sim-
ilarity measures. Although this system is particularly appealing for musicological studies, the
current grammar is not expressive enough to support certain chord sequence. As a result, chord
sequence that are deemed as ungrammatical cannot be parsed, hence jeopardising the compu-
tation of the harmonic similarities.

6.2 Methodology

The state of the art methods reviewed in the previous sections have been demonstrated to be
effective at detecting cover songs exclusively from their chord progressions – a specific task in
music information retrieval (MIR). Nonetheless, the choice of harmonic similarity function strictly
depends on the definition of similarity per se (i.e. what makes two harmonic progression similar to
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each other), and the kind of analyses the overall system should enable (i.e. what should inflate or
deflate the similarity score). For instance, a local similarity measure – identifying specific regions
from harmonic sequences that can be related to each other, would accommodate different use
cases when compared to a global method – seeking to establish harmonic dependencies among
tracks only when their harmonic profiles are globally aligned. In other words, a method that excels
on a certain task does not necessarily generalise to accommodate other use cases.
The harmonic similarity proposed in this chapter is formulated in a way to emphasise shared re-
peated patterns among two arbitrary symbolic sequences, hence it provides a general framework
for the analysis of symbolic streams based on their local structures. As illustrated in Figure 6.1,
the domain-specific parts are the pre-processing and encoding steps, whereas the downstream
part of the pipeline – including pattern extraction and matching operations, is completely general.

Polifonia | 2020

Harmonic Similarity

Progression A Progression B
Crazy Little Thing Called Love P.S. I Love You
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G, C#:7, D, G, C#:7, D, G, C#:7, D, A, D, E:min, D, 
. . . D, A, B:min, A, Bb, C, D, Bb, C, D, Bb, C, D

C, F, Bb, F, C, F, Bb, F, C, Ab, Bb, C, F, Bb, F, 
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. . . G, A:min, G, Ab, Bb, C, Ab, Bb, C, Ab, Bb, C

Normalisation

106, 227, 96, 227, 106, 227, 96, 227, 106, 145,  
. . . 145, 96, 106, 145, 96, 106, 145, 96, 106
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& Encoding
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(10, 106, 227, 96, 227) . . . (227, 106, 145, 96)

(238, 106, 10, 131, 10, 145, 96, 106, 227, 106), 
. . . (145, 96, 106, 227, 106, 227, 106, 227)

Harmonic similarity

Similarity score: 0.23
(min 0 – max 1)

Longest pattern in common
Ab, Bb, C, Ab, Bb, C

Figure 6.2: A real example of the workflow on two different harmonic progressions.

Harmonic reduction. Chord progression are simplified before comparison – the bass note is
removed (as empirically demonstrated in [107], this operation improves the generalisation
capabilities of the next steps, thereby producing more consistent similarity scores), and
consecutively repeated chords are removed. This provides a “bird’s eye view” on the global
harmonic properties of each piece.

Key-based normalisation. Chords labels/classes in a progression need to be contextualised
according to the key of the piece (defined by the tonic and the scale) before any comparison
is possible. Therefore, all chord progressions are transposed to the same key: C major.
This last transformation concludes the pre-processing operations.

Decomposition of chords. The normalised harmonic sequences are then prepared for the en-
coding step, so that they can be used as input to the any computational procedure. Rather
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than further simplifying the symbolic musical content, a new encoding procedure was de-
signed to retain the fundamental internal structure of each chord. More precisely, every
chord label is decomposed into its pitch constituents – the individual pitches it is made of.
For example, a C major is encoded as a multi-hot vector where the elements corresponding
to the active pitches are equal to 1; all the others are 0.

Enumeration of pitch simultaneities. To reduce the complexity of any potential polyphonic
model using such sparse local representations of chords, each unique decomposition is
then assigned to an index (an integer value). As it can be observed, this is akin to the com-
mon encoding approach used in natural language processing for word tokens. This results
into chord tokens defined over the vocabulary of all possible chord decompositions.

Harmonic thumbnailing. To identify the areas/regions of chord progressions that can be
deemed as “harmonically memorable”, we extract the n-grams of all possible orders – start-
ing from n ≥ 3 (i.e. from tri-grams), that repeat at least once within the progression. We
call them “harmonic thumbnails”, as they represent harmonic structures per se.

Shared harmonic patterns. Finally, chord progressions are compared for similarity based on
the agreement between their harmonic thumbnails. In particular, the longest harmonic
structures they share is compared to the order of the longest thumbnail that occurs within
each progression, independently. Therefore, depending on the harmonic patterns the two
chord progressions have in common – in relation to their internal structures, the similarity
function will return a value between 0 and 1 (the higher the value, the stronger the similarity)
together with the longest harmonic patterns they share.

The relatively simple and intuitive formulation of the similarity function – generalising to any sym-
bolic sequence, does not pose any particular assumption in the pattern extraction and the match-
ing process that could limit its applicability or specialise it to a certain musical genre/style. The
major element of concern is represented by the data pre-processing and encoding steps, as mu-
sic experts may argue that transposition to the same key would alter the musical texture in a
way to compromise its consistency with the original (non-transposed) version. In addition, the
decomposition encoding may also raise some concerns from a music theory perspective, as two
distinct chord labels producing the very same sound (their pitch decomposition is identical) could
have different harmonic functions/contexts. Both these critical points can be thought of as sim-
plifications rather than contextual assumptions, although we are still in the process of validating
their global suitability and collect expert feedback to extend/improve both steps, if necessary.
A concrete example of the main steps explained above is reported in Figure 6.2 for two pop/rock
pieces: “Crazy Little Thing Called Love” by Queen and “P.S. I Love You” by The Beatles.

6.3 Preliminary results

To evaluate the proposed harmonic similarity method, two experiments were carried out on a
collection of music datasets providing high-quality chord annotations of audio tracks belonging to
different genres and styles (c.f. Section 6.3.1). Although the current experimental design does
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Figure 6.3: Illustration of the harmonic graph, encoding all the harmonic dependencies
established between tracks in the three music collections, using the proposed similarity function.

not yet involve an expert evaluation of the similarity scores – needed to fully validate their plausi-
bility and meaningfulness from a musicological perspective, we adapted and extended standard
evaluation methodologies [104, 107] based on the cover song detection task. More precisely, the
pair-wise harmonic similarity was computed between all tracks in the music datasets, and a graph
encoding such similarities was created to formally describe this analysis (c.f. Section 6.3.2). In
doing so, community detection methods were applied on the resulting network to discover groups
of tracks sharing similar harmonic dependencies – a property that is expected to be intrinsically
related to the genre/style of the music under analysis. In other words, the main research question
behind this experiment can be framed as follows: “can such groups be associated to a particular
genre?”, which is addressed in Section 6.3.3. Second, we isolate those recordings that are asso-
ciated to the same composition2 and rank their harmonic similarity in relation to the other tracks.
We expect performances of the same composition to all have the highest rank with each other.
In the harmonic network, assuming that the harmonic similarity is effective, this would result in
a number of cliques – one for each composition. This experiment is thus akin to the cover song
detection task, and the results are briefly outlined in Section 6.3.4.

6.3.1 Chord datasets

The selection of datasets was driven by the need of having professional and validated chords
annotations. This allowed to focus only on the harmonic similarity, without the need to deal with
automatic chord recognition. Furthermore, given the purpose of this work, a further requirement
of the experiment was to deal with tracks from different music genres and styles. Given these
requirements, the choice fell on three datasets, each relating to a musical genre:

2For composition, we refer to a musical work usually represented in notated form (e.g. score) independently from
all its possible interpretations or performances.
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• Isophonics [110] for pop-rock music;
• Audio-aligned jazz harmony dataset (JAAH) [111] for jazz music;
• Schubert Winterreise [112] for classical music.

Isophonics 3 is a hosting of the software and the data produced by the Centre for Digital Mu-
sic (C4DM) of the Queen Mary University of London. Among the datasets that Isophonics makes
available, we decided to use three: Queen, Beatles and Michael Jackson. Each of these datasets
contains chord, onset and segmentation annotations. Similarly, JAAH [113] provides meter, struc-
ture, and chords annotation for each audio track. Finally, the Schubert Winterreise dataset [114],
provides various representations and annotations of Franz Schubert’s song cycle Winterreise.
For each of the recording of each representation, the dataset provides singer’s lyrics, sheet mu-
sic in different machine-readable formats, and audio recordings of nine performances, as well as
musicological annotations describing tonal and structural characteristics, such as chord annota-
tions, local and global annotations of musical keys, and segmentations into structural parts.
In total, 525 tracks were considered for this work, combining all datasets. Nevertheless, before
proceeding with the analysis of the data, a cleaning and alignment phase had to be carried out
for the chords annotations, all of which were transformed into JAMS format [115].

6.3.2 The harmonic network

As illustrated in Figure 6.3.2, in the harmonic network nodes correspond to tracks in our music
datasets, whereas edges connect nodes if their value of harmonic similarity is greater than 0
(an harmonic match was found). To simplify the inspection, a grey-scale colourmap visually
projects the value of harmonic similarity expressed by edges: from light grey (low similarity) to
plain black (high similarity). Instead, nodes are sized according to their degree – the number of
connections/edges they have4. A distinct border colour also differentiate nodes according to the
music dataset they come from: yellow border for tracks in Schubert-Winterreise; black border for
Isophonics; and red for JAAH.

6.3.3 Experiment 1: unveiling network structures

To address the first research question, a community detection algorithm was run on the harmonic
network, and in particular, the Clauset-Newman-Moore modularity maximisation procedure [116].
This allowed to associate each node (track/progression) to a community/cluster based on the
harmonic dependencies established with the other tracks. In Figure 6.1, this is illustrated by the
(inner-)colour of each node, uniquely denoting a community.
From a closer view of the graph (Figure 6.4), we notice that clusters emerging from the community
detection procedure can already express the relationship between nodes and their dataset –

3http://isophonics.net/
4As the graph is undirected, considering that similarity is symmetric by definition, the degree is equal to the number

of tracks sharing harmonic structures.
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meaning that our harmonic similarity function permits to implicitly detect the genres of tracks from
their harmonic progression. In fact, each dataset gets clustered in separate communities, with a
relatively small amount of overlap between them. In that regard, what is particularly interesting
to inspect, is to look at those tracks that end up in a cluster different from that of their datasets.

6.3.4 Experiment 2: performance-composition detection

By exploiting the characteristics of the Schubert Winterreise dataset, which contains multiple
performances of the same pieces, it was possible to validate the similarity function developed
for this work. As can be observed from the graph (Figure 6.5), several performances of the
same piece are grouped together in cliques. These groups of nodes within the graph are closely
connected to each other, both in terms of the number of connections and the very high similarity
value that binds them. However, it is possible to observe that the different performances result
in small differences in the harmony of the piece, leading to a minimal shift of the nodes on the
Cartesian axes of the graph.

Figure 6.4: Collections as communities (clusters). Figure 6.5: A composition clique.

6.4 FAIRness and reproducibility

All experiments presented in the previous sections were carried out using data from three different
datasets, namely Isophonics, JAAH and Schubert Winterreise. All these datasets are available
and downloadable from their respective repositories. The chord notation data of each dataset
was then converted and transformed into JAMS format, a format designed to provide simplicity,
structure and sustainability to the data. The code for converting the chords into JAMS format
is available in a separate folder on GitHubhttps://github.com/polifonia-project/
mir-resources.
All the resources used, i.e. three datasets and their metadata, as well as the converted chords are
stored in a GitHub repository https://github.com/polifonia-project/datasets
and can be freely accessed. In addition, the entire code developed for all described steps is avail-
able in the repository https://github.com/polifonia-project/lharp. Moreover,
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the repository has been associated to a Zenodo identifier (https://doi.org/10.5281/
zenodo.5769546, which provides a unique link to the information in the repository and its
version. All of the above code is also released under a Creative Commons (CC BY-NC 4.0)
not-for-profit, which guarantees re-use of the code and data.
All the experiments proposed for this section are therefore reproducible in all their parts and
the data to perform them is available. It is also possible to use the tools provided to run new
experiments on other datasets, thus further evaluating the proposed approach.
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7 Conclusions

We have reported on initial work in four main strands during the first 11 months of the project.
Thus, none of these strands of work is declared as finished. However, we have put in place
necessary foundations and achieved several early results:

• Review of existing work across several strands of research;
• Pattern algorithms for Irish folk music, with initial analyses of relationships among tunes and

informal validation of these analyses, and initial generalisation of this code to run on Dutch
corpora, addressing the Mark and William personas and the TUNES pilot; also foundational
work on root note detection;

• A functional faceted search engine incorporating pattern matching, addressing the Sethus
and Sophia personas and the FACETS pilot;

• A demo application which makes connections among pieces across multiple corpora,
e.g. based on harmonic analyses, addressing the Sonia and Keith personas and the IN-
TERLINK pilot.

7.1 Future work

In future work, each strand of work will continue to deliver new results according to its own meth-
ods. However, opportunities for links between projects will also arise. For example, the FONN
software (Chapter 3) has been generalised to run on the Meertens Tune Collections (Chapter
4). The next step will be to use such software to investigate inter-corpus patterns. An example
research question might be: which Irish tunes have their origins in Dutch tunes, which vice versa,
and which Irish and Dutch tunes have common origins elsewhere?

7.1.1 Data formats

As the Polifonia ecosystem grows and becomes more interconnected, we expect to be able to
ingest more input formats, e.g. MEI https://music-encoding.org/about/

7.1.2 Pattern Knowledge Graphs

Knowledge graphs are central to the Polifonia vision. In WP3 to date knowledge graphs have
been used only in the strand of research on harmonic analysis (Chapter 6), which integrates
with the Polifonia prototype knowledge graph (see WP2 and Deliverable D2.1). Other strands of
research have worked directly with score-level data, e.g. abc or MIDI representations. In future,
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there are three possibilities to integrate knowledge graphs with pattern research in WP3. Firstly,
our datasets can be converted to knowledge graph formats and this is planned in some cases.
Secondly, algorithms for extracting patterns can create or help to populate knowledge graphs.
The “dimensions” of pattern presented in Chapter 2 serve as a starting point for discussion of
pattern ontology.
In the other direction, knowledge graphs which already contain some musical annotations
(e.g. structural information) may enable smarter pattern extraction algorithms.
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